Innocenti, G. M., & Price, D. J. (2005). Exuberance in the development of cortical networks. Nature reviews. Neuroscience, 6(12), 955–965. https://doi.org/10.1038/nrn1790
Haynes, L., Ip, A., Cho, I. Y. K., Dimond, D., Rohr, C. S., Bagshawe, M., Dewey, D., Lebel, C., & Bray, S. (2020). Grey and white matter volumes in early childhood: A comparison of voxel-based morphometry pipelines. Developmental Cognitive Neuroscience, 46, 100875. https://doi.org/10.1016/j.dcn.2020.100875
Holland, D., Chang, L., Ernst, T. M., Curran, M., Buchthal, S. D., Alicata, D., Skranes, J., Johansen, H., Hernandez, A., Yamakawa, R., Kuperman, J. M., & Dale, A. M. (2014). Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development. JAMA Neurology, 71(10), 1266. https://doi.org/10.1001/jamaneurol.2014.1638
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A Structural MRI Study of Human Brain Development from Birth to 2 Years. The Journal of Neuroscience, 28(47), 12176–12182. https://doi.org/10.1523/JNEUROSCI.3479-08.2008
Beuriat, P.-A., Cristofori, I., Richard, N., Bardi, L., Loriette, C., Szathmari, A., Di Rocco, F., Leblond, P., Frappaz, D., Faure-Conter, C., Claude, L., Mottolese, C., & Desmurget, M. (2020). Cerebellar lesions at a young age predict poorer long-term functional recovery. Brain Communications, 2(1). https://doi.org/10.1093/braincomms/fcaa027
Sathyanesan, A., Zhou, J., Scafidi, J., Heck, D. H., Sillitoe, R. V., & Gallo, V. (2019). Emerging connections between cerebellar development, behaviour and complex brain disorders. Nature reviews. Neuroscience, 20(5), 298–313. https://doi.org/10.1038/s41583-019-0152-2
Wee, C., Tuan, T. A., Broekman, B. F. P., Ong, M. Y., Chong, Y., Kwek, K., Shek, L. P., Saw, S., Gluckman, P. D., Fortier, M. V., Meaney, M. J., & Qiu, A. (2017). Neonatal neural networks predict children behavioral profiles later in life. Human Brain Mapping, 38(3), 1362–1373. https://doi.org/10.1002/hbm.23459
Ullman, H., Almeida, R., & Klingberg, T. (2014). Structural Maturation and Brain Activity Predict Future Working Memory Capacity during Childhood Development. The Journal of Neuroscience, 34(5), 1592–1598. https://doi.org/10.1523/JNEUROSCI.0842-13.2014
Kuhl, P. K., Coffey-Corina, S., Padden, D., Munson, J., Estes, A., & Dawson, G. (2013). Brain Responses to Words in 2-Year-Olds with Autism Predict Developmental Outcomes at Age 6. PLoS ONE, 8(5), e64967. https://doi.org/10.1371/journal.pone.0064967
McNorgan, C., Alvarez, A., Bhullar, A., Gayda, J., & Booth, J. R. (2011). Prediction of Reading Skill Several Years Later Depends on Age and Brain Region: Implications for Developmental Models of Reading. Journal of Neuroscience, 31(26), 9641–9648. https://doi.org/10.1523/JNEUROSCI.0334-11.2011
Fenchel, D., Dimitrova, R., Robinson, E. C., Batalle, D., Chew, A., Falconer, S., Kyriakopoulou, V., Nosarti, C., Hutter, J., Christiaens, D., Pietsch, M., Brandon, J., Hughes, E. J., Allsop, J., O’Keeffe, C., Price, A. N., Cordero-Grande, L., Schuh, A., Makropoulos, A., … O’Muircheartaigh, J. (2022). Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Developmental Cognitive Neuroscience, 54, 101103. https://doi.org/10.1016/j.dcn.2022.101103
Edwards, A. D., Rueckert, D., Smith, S. M., Abo Seada, S., Alansary, A., Almalbis, J., Allsop, J., Andersson, J., Arichi, T., Arulkumaran, S., Bastiani, M., Batalle, D., Baxter, L., Bozek, J., Braithwaite, E., Brandon, J., Carney, O., Chew, A., Christiaens, D., … Hajnal, J. V. (2022). The Developing Human Connectome Project Neonatal Data Release. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.886772
Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 20(2), 870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
Christiaens, D., Cordero-Grande, L., Pietsch, M., Hutter, J., Price, A. N., Hughes, E. J., Vecchiato, K., Deprez, M., Edwards, A. D., Hajnal, J. V., & Tournier, J.-D. (2021). Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. NeuroImage, 225, 117437. https://doi.org/10.1016/j.neuroimage.2020.117437
Daducci, A., Canales-Rodríguez, E. J., Zhang, H., Dyrby, T. B., Alexander, D. C., & Thiran, J.-P. (2015). Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. NeuroImage, 105, 32–44. https://doi.org/10.1016/j.neuroimage.2014.10.026
Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4), 1000–1016. https://doi.org/10.1016/j.neuroimage.2012.03.072
Kamiya, K., Hori, M., & Aoki, S. (2020). NODDI in clinical research. Journal of Neuroscience Methods, 346, 108908. https://doi.org/10.1016/j.jneumeth.2020.108908
Wang, Y., Chen, L., Wu, Z., Li, T., Sun, Y., Cheng, J., Zhu, H., Lin, W., Wang, L., Huang, W., & Li, G. (2023). Longitudinal development of the cerebellum in human infants during the first 800 days. Cell Reports, 42(4), 112281. https://doi.org/10.1016/j.celrep.2023.112281
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage, 46(1), 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045
Diedrichsen, J., Maderwald, S., Küper, M., Thürling, M., Rabe, K., Gizewski, E. R., Ladd, M. E., & Timmann, D. (2011). Imaging the deep cerebellar nuclei: A probabilistic atlas and normalization procedure. NeuroImage, 54(3), 1786–1794. https://doi.org/10.1016/j.neuroimage.2010.10.035
Bayley, N. (2012). Bayley Scales of Infant and Toddler Development, Third Edition. https://doi.org/10.1037/t14978-000
Allison, C., Matthews, F. E., Ruta, L., Pasco, G., Soufer, R., Brayne, C., Charman, T., & Baron-Cohen, S. (2021). Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple time-point screening for autism. BMJ Paediatrics Open, 5(1), e000700. https://doi.org/10.1136/bmjpo-2020-000700
Wood, S. N. (2017). Generalized Additive Models: An Introduction with R (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279
Marvel, C. L., & Desmond, J. E. (2010). Functional Topography of the Cerebellum in Verbal Working Memory. Neuropsychology Review, 20(3), 271–279. https://doi.org/10.1007/s11065-010-9137-7
Saadon-Grosman, N., Angeli, P. A., DiNicola, L. M., & Buckner, R. L. (2022). A third somatomotor representation in the human cerebellum. Journal of Neurophysiology, 128(4), 1051–1073. https://doi.org/10.1152/jn.00165.2022
Stephen, R., Elizabeth, Y., & Christophe, H. (2018). Participation of the caudal cerebellar lobule IX to the dorsal attentional network. Cerebellum & ataxias, 5, 9. https://doi.org/10.1186/s40673-018-0088-8
Olson, I. R., Hoffman, L. J., Jobson, K. R., Popal, H. S., & Wang, Y. (2023). Little brain, little minds: The big role of the cerebellum in social development. Developmental cognitive neuroscience, 60, 101238. https://doi.org/10.1016/j.dcn.2023.101238
Popa, L.S., Ebner, T.J. (2022). Cerebellum and Internal Models. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_56