

Background • The cerebellum has been implicated in both motor and non-motor function. • There is evidence of some involvement of the cerebellum in linguistic functions¹. • Damage to the cerebellum in adults has been shown to result in issues such as agrammatisim², anomia³, and issues with verbal fluency⁴. Personality changes ↓ Spontaneous initiation of movement (e.g.eye opening/chewing) Jrin retention/incontinen Whining Hemiparesis Depressior Nvstaamus ↓ Visual-spatial skills Ataxia Dysmetria ↓FSIQ, PIQ, VIQ Hypotonia Dysphagia Inattention **CN** palsies (VLVII) 1 Memory Word finding difficulties ∕↓Verbal fluency Dysarthria Slowed speech Agrammatism Adynamic spontaneous speech production VGUAGE AND SPEECH *Gundrunardottir et al. (2011)* However, many of the subsequent issues described do not persist after the acute phase (~6 months) after stroke/damage to the cerebellum. • On the contrary, children are left with life-long deficits (linguistic and otherwise) when their cerebellums are damaged³. • The cerebellum has been implicated in many developmental disorders, such as dyslexia, autism spectrum disorder, and ADHD⁵. pathways. **Motivating Question** • Children's brains are known to be generally more plastic than adults' throughout development⁶. • This is not true for the cerebellum What role does the cerebellum play in language development? DN = dentate nucleus TL = thalamus IFG = inferior frontal gyrus Jobson et al. (2022)

The cerebellum and its contributions to the developing linguistic cerebrum

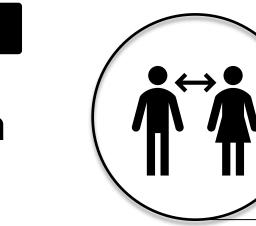
Katie R. Jobson¹, Kathy Hirsh-Pasek¹, Jamie Reilly¹, Ingrid R. Olson¹ Temple University, Pennsylvania, USA¹

mple Case Studies			
TATION	PATIENT INFO (AGE OF INSULT)	CAUSE OF CB DAMAGE	LANGUAGE OBSERVATIONS
ludson, urdoch & nne (1989) <i>Case 2)</i>	Male, 2 years old 7 months	Midline posterior fossa tumor	Patient exhibited global language deficits that included all aspects of expression and reception
no, Fabbro gatti (2007) <i>Case 1)</i>	Male, 9 years old	Enlargement of the fourth ventricle	Morphosyntactic and phonological abilities were impaired; grammatica comprehension was impaired (difficulty with all structured sentences)
a & Giorgi (2000) (<i>n = 7)</i>	Mean age 9.8, range of 6.11–13.4 years	Right cerebellum astrocytoma for all cases	Naming, comprehension, and receptive syntax were found to be impaired
arsen et , (2004) <i>es 6, 8, 11)</i>	Ages: 16 years and 4 months old; 16 years and 8 months old; 8 years and 6 months old	Dorsal vermis astrocytoma; tumor covered both hemispheres & vermis; medial right hemisphere astrocytoma	Patients exhibited semantic- pragmatic deficits
ewis & och (2010) <i>Case 3)</i>	Female, 10 years 3 months	Midline medulloblastoma with damage to third and fourth ventricles	Receptive language score was ≥ 2 standard deviations below control cohort
occo et al. (2011) <i>n = 11)</i>	Average age 6.73 years, range of 2- 11 (6 female, 5 male)	Posterior fossa tumors in various locations (vermis, IV ventricles, right cerebellar hemisphere, left peduncle)	Lexical retrieval, lexical comprehension
ocking, och & Ward (2004) (<i>n = 9)</i>	Average age of 6 years, range of 2- 11 (6 male, 2 female, one child unreported)	Posterior fossa tumor	Phonological awareness (5/9), general linguistic deficit (3/9), high- level language deficit (6/9)

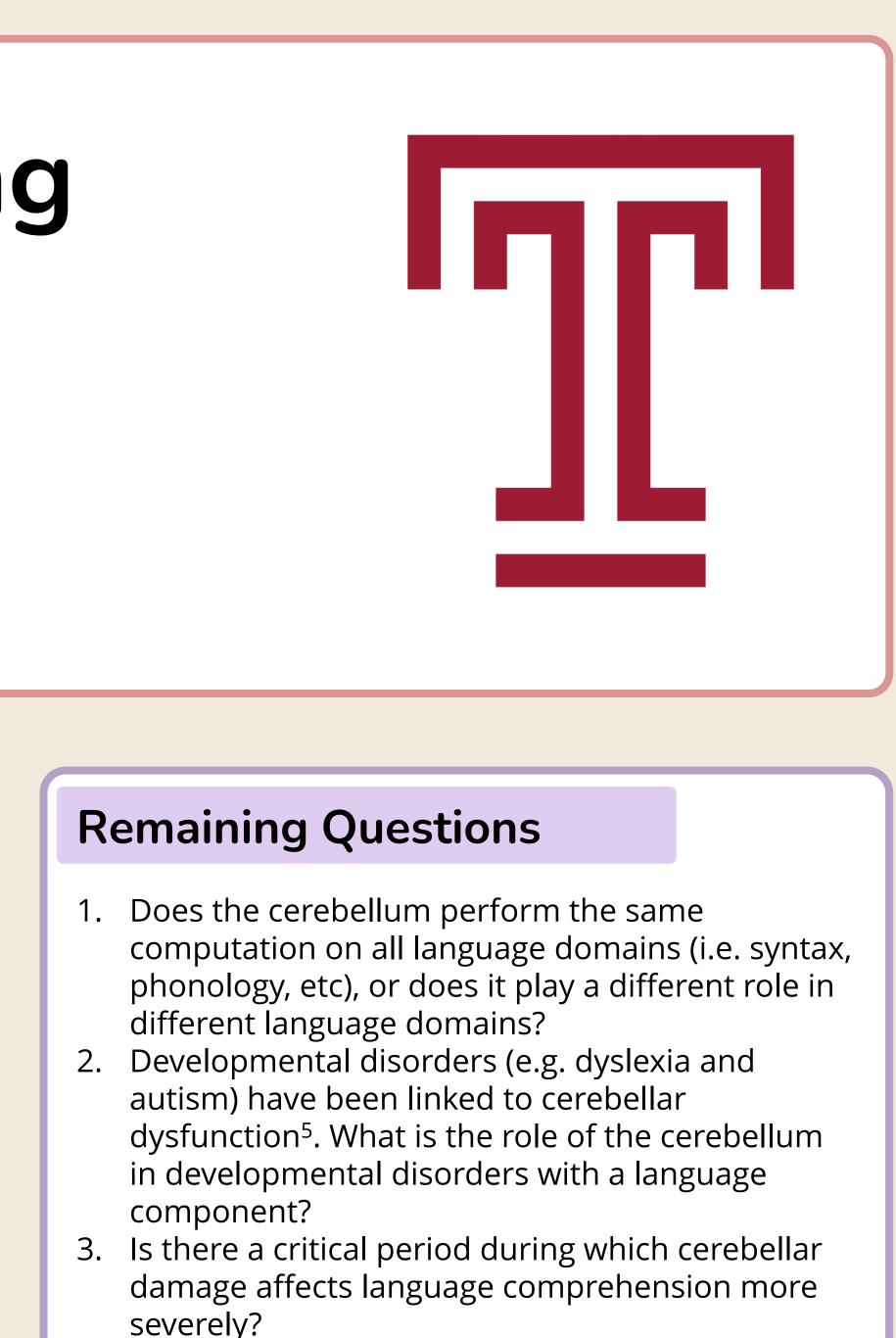
Case Study Take-Aways

A thorough investigation of the literature reveals that damage in early life produces relatively worse effects on language than later in life. However, the affected linguistic domain varies across studies.

Explanations for Cerebellar Involvement in Development


The most popular theory about the cerebellum's role in development is that it **trains the**

– but what is the cerebrum in?



Timing in essential for prosody and the back-and-forth of conversation^{32,33}, both of which the cerebellum is involved in. **Timing**

Fluent speech requires rapid evaluation of sensorimotor input³⁴, which the cerebellum is involved in. This could be related to both *prediction* and *timing*. **Fluency**

Social interaction is a core influence on language development³⁵; the cerebellum has been shown to be heavily involved in social interaction^{23.}The primary theory is that *sequencing* is most Social involved in social interaction.

4. To what extent is there overlap between language and social functions? Social interactions influence language development³⁵ but the extent to which these two are intertwined regarding the cerebellum needs further investigation.

